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Abstract

This article reports an alternative treatment in lieu of the principle of variational calculus for a certain class of

optimization problems. In particular, the optimum distribution of insulating material on one side of a flat plate for min-

imum heat transfer is sought when the other side is exposed to a laminar forced convection. Both conjugate and non-

conjugate formulations of the problem are conceived and closed form solutions are presented. Interestingly, optimized

insulation profile exhibits a category of equipartition principle in some macroscopic domain. Expression for minimum

heat transfer is a function of Biot number in non-conjugate analysis of the model. Contrastingly, the non-dimensional

group JhL is the characteristic parameter for conjugate formulation. Finally, Bejan�s method of intersecting asymptotes
is employed to find an order of magnitude for a ceiling value of the wall material. With some scale factor, a range

0 < Jmax 6 1:506Pr�1=3 for the representative material volume can be ascertained, beyond which the optimization exer-
cise reduces to a trivial one and traditional constant thickness profile becomes a recognized design.
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1. Introduction

In conventional formulation of heat transfer between

a stream of fluid and flat plate, boundary conditions are

normally stipulated at the solid–liquid interface i.e., at

the top of the plate as shown in Fig. 1. However in a

large number of applications the temperature at the bot-

tom surface of the plate is either specified or can be esti-

mated. If the plate is of negligible thickness or has a high

thermal conductivity, the temperature drop between the

top and bottom surface can be neglected and the prob-

lem is solved purely in convective heat transfer regime.
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When thickness of the plate is not negligible or even

varying along its length and the thermal conductivity

of the wall material is poor, the boundary conditions

at the bottom of the plate is to be considered and the

whole problem is to be reformulated as a conductive–

convective one. This is a fundamental mathematical

challenge imposed by the design criterion of thermal

insulating systems.

The present discussion has the reference of conduc-

tive–convective heat transfer along a flat plate of vari-

able thickness and is due to Lim et al. [1]. The goal of

the work was the optimal distribution of a limited quan-

tity of insulating material on the backside of a convec-

tively cooled flat plate. In the first part of their paper

the authors assumed a boundary layer type variation
ed.
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Nomenclature

A non-dimensional parameter, Eq. (35)

b non-dimensional taper parameter, Eq. (33)

B non-dimensional parameter, Eq. (35)

C non-dimensional parameter, Eq. (35)

Bi Biot number, Eq. (6)

Ec Eckert number

f(g) function obtained from Blasius solution

h(x) local convective heat transfer coefficient

hL heat transfer coefficient at the extreme

downstream

J dimensionless group, Eq. (17)

J non-dimensional physical parameter, Eq.

(16)

kf thermal conductivity of fluid

kw thermal conductivity of insulating material

L length of the flat plate

n exponent in heat transfer co-efficient rela-

tion, Eq. (3)

Pr Prandtl number

q 0 heat transfer rate per unit length, Eqs. (5)

and (21)

q00 local heat flux, Eq. (4)

R total conductive and convective resistance,

Eq. (7)

Rex local Reynolds number, U1x/m
ReL Reynolds number at the extreme down-

stream, U1L/m
_Sgen entropy generation rate, Eq. (42)
_Sgen uniform entropy generation rate, Eq. (43)

t variable wall thickness

t length-based averaged wall thickness, Eq.

(2a)

T0 temperature at the bottom surface of the

plate

T1 temperature of the free stream

DT constant thermal potential difference, Eq.

(1)

u velocity component along the flat plate

U1 free stream velocity

v velocity component normal to the flat

plate

x coordinate along the flat plate, Figs. 1 and 2

y coordinate perpendicular to the flat plate,

Figs. 1 and 2

Greek symbols

a dummy variable, Eq. (18)

b dummy variable, Eq. (18)

v arbitrary design variable, Eq. (44)

v total magnitude of all dissipative forces, Eq.

(44)

g similarity variable, Eq. (12)

h non-dimensionalized fluid temperature, Eq.

(12)

k Lagrange multiplier, Eq. (23)

m kinematic viscosity

n dimensionless coordinate, x/L

U aggregate integral, Eq. (23)

Subscripts

constant uniform wall thickness distribution, t ¼ t
i number of competing dissipating mech-

anisms

m dummy variable, Eq. (44)

max maximum

min minimum with conjugate formulation, Eq.

(29)
*min minimum with non-conjugate formulation,

Eq. (10)

opt optimum wall thickness distribution, Eq.

(28)

taper tapered wall thickness distribution, Eq.

(33)

* optimum wall thickness distribution, Eq. (9)
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of convective heat transfer coefficient and determined

the total thermal resistance as a series combination con-

tributed by conduction and convection. Accounting for

the constraint of insulation volume they could cast the

optimization problem in Euler–Lagrange form and ob-

tained an analytical solution. The second part of their

paper solves the same problem of forced convection

using the conjugate heat transfer condition without

assuming any heat transfer coefficient before hand. They

provided a general formulation for convective cooling of

a flat plate with lagging of arbitrary thickness on the

other surface. However, they failed to extend the calcu-

lus of variation to find out the optimum profile of insu-

lation in this case. Instead of considering the optimum
non-linear profile thickness they numerically determined

the total rate of heat loss for a linearly varying tapered

shape and showed it to be less than that of a plate with

constant thickness of insulation.

In the present investigation the above problem has

been revisited. Firstly, it has been shown that the result

deduced by variational calculus can be obtained by a

simple heuristic logic grounded on the physics of the

problem. Secondly, the heuristic logic is not only appli-

cable for the first part of the problem [1] with known

variation of heat transfer coefficient but can also be em-

ployed for the second part where the estimation of heat

transfer is based on a truly conjugate formulation. Fur-

ther, an approximate bound of the insulation volume
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Fig. 1. Flat plate with variable thickness at bottom and

convection on top.
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has been provided by Bejan�s method of intersecting

asymptotes for any meaningful optimization of the insu-

lation design. An analytical treatment has been extended

for the design of tapered insulation profile. Finally, it

has been argued that present problem demonstrates a

category of equipartition.
2. The physical model

A flat plate with variable thickness and finite length is

considered as shown in Fig. 1. The bottom of the plate is

exposed to an environment with high convective heat

transfer coefficient such that the temperature of the sur-

face remains practically uniform at T0. Top and the flat

side of the plate is in thermal communication with a dif-

ferent flow characteristic, (kf,U1,T1). Total inventory

of the wall material is fixed. It is desirable to seek an

optimal distribution of the wall material to achieve

minimum heat transfer from the plate [1]. This is a fun-

damental optimization problem encountered in the de-

sign of thermal insulating systems.

In the present analysis, we assume that the driving

potential for heat transfer remains piecewise constant

i.e.,

T1 � T 0 ¼ DT ðConstantÞ: ð1Þ

The material volume per unit length is a constant and

can be expressed in terms of average thickness as

t ¼ 1

L

Z L

0

tðxÞdx ð2aÞ

orZ 1

0

tðnÞ
t
dn ¼ 1; with n ¼ x

L
: ð2bÞ
3. Optimization with assumed variation of heat transfer

coefficient

In a forced convection heat transfer from a flat plate

it is legitimate to assume a power law variation of heat

transfer coefficient along the direction of the flow in

the form [1]

h ¼ hLn
�n; ð3Þ

where hL is the lowest value of heat transfer coefficient

at the extreme downstream x = L and n is an

exponent.

Local heat flux q00 driven by temperature potential

DT can be expressed considering convective and conduc-

tive resistances in series as

q00 ¼ DT
tðxÞ
kw

þ 1

hðxÞ

: ð4Þ

Eq. (4) can be integrated for the entire length of the

plate invoking Eq. (3) to obtain total heat transfer rate

q 0 per unit length perpendicular to the plane in the

dimensionless from as

q0

kwLDT=t
¼
Z 1

0

dn
t
t
þ nn

Bi

; ð5Þ

where

Bi ¼ hLt
kw

: ð6Þ

Lim et al. [1] constructed an aggregate integral com-

bining Eqs. (5) and (2b) through a Lagrange multiplier.

Finally, the Euler–Lagrange equation of the integral

was solved to find out the optimum thickness of

insulation.

In the present work the problem has been attacked by

a simple heuristic logic. As the goal is to reduce the heat

loss from the total length of the plate it is instructive to

provide the maximum thickness of insulation where the

coefficient of convective heat transfer is maximum. In

other words, one should equip the highest conductive

resistance where the convective resistance is minimum.

This exercise should be carried out for the entire plate

length under the constraint of limited insulation mate-

rial. Logically this exercise can terminate only when

uniform total thermal resistance (conductive plus con-

vective) exists throughout the length of the plate. Math-

ematically, this translates into the equation with the

stipulation that the denominator of the integrand in

Eq. (5) is constant i.e.,

t
t
þ nn

Bi
¼ R ðConstantÞ: ð7Þ

A schematic for this heuristic logic is graphically supple-

mented in Fig. 2.
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Fig. 2. Conceptual basis of heuristic model.
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Providing an expression for tðnÞ=t in Eq. (2b) fromEq.

(7), we obtain another expression for total resistance as

1

ðnþ 1ÞBiþ 1 ¼ R: ð8Þ

Eliminating R from Eq. (7) and Eq. (8) leads to the func-

tional form of optimal distribution of insulation thick-

ness t
*
as

t�
t
¼ 1þ 1

Bi
1

nþ 1
� nn

� �
; ð9Þ

where Biot number, Bi is defined in Eq. (6).

Minimum heat transfer rate from Eq. (5) invoking

Eq. (9) in the denominator of the integrand is obtained

in non-dimensional form as

q0�min
kwLDT=t

¼ Bi

Biþ ðnþ 1Þ�1
: ð10Þ

Eqs. (9) and (10) are the important results for the opti-

mum allocation of insulation and were obtained employ-

ing calculus of variation in open literature [1].
4. Optimization with unknown variation of convective

heat transfer coefficient

In actual practice neither the variation of tempera-

ture at the top surface of the plate nor convective heat

transfer coefficient is known a priori [1]. Rather it is to

be determined from one of conjugate convective–con-

ductive formulation of the problem. Neglecting dissipa-

tion (Ec 	 1), boundary layer energy equation can be

written in the form [2]

d2h
dg2

þ 1

2
Pr f

dh
dg

¼ 0; ð11Þ
with the definitions

g ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=U1

p ¼ y
x
Re1=2x ;

hðgÞ ¼ T f � T 0
T1 � T 0

and
df
dg

¼ u
U1

: ð12Þ

The similarity function f(g) is obtained from the momen-

tum equation of Blasius form [3]. Free stream boundary

condition by definition reads as

h ! 1 at g ! 1 ðy ! 1Þ: ð13Þ

Considering maximum thickness of the wall is much

smaller than its length, longitudinal conduction through

the insulating material can be neglected. Thus, the con-

jugate boundary condition can be modeled at the inter-

face y = 0 as

kf
oT f
oy

� �
0þ

¼ kw
T w � T 0
tðxÞ

� �
0�

ð14aÞ

and

T f ¼ T w: ð14bÞ

The non-dimensional version of these two boundary

conditions, Eqs. (14a) and (14b), become

J
oh
og

¼ h at g ¼ 0; ð15Þ

where

J ¼ kf
kw

t
L
Re1=2L ð16Þ

and

J ¼ J
t
t
n�1=2: ð17Þ

The dimensionless number J is in general a function of x

except for some special functional form of t(x). The

quantity J ! 0 represents Pohlhausen limit that is for

the isothermal plate with negligible wall thickness.

Eq. (11) can be integrated in a straightforward man-

ner using the relation, Eq. (17) and boundary conditions

Eqs. (13) and (15) to yield

h0ð0Þ ¼ J
t
t
n�1=2 þ

Z 1

0

exp � Pr
2

Z b

0

f ðaÞda
� �

db

� 	�1

:

ð18Þ

But the improper integral in the denominator of Eq. (18)

is well known in the literature [4] and for Pr > 0.5 it is

most accurately correlated asZ 1

0

exp � Pr
2

Z b

0

f ðaÞda
� �

db ¼ 0:332Pr1=3

 ��1

: ð19Þ

Our concern is to calculate overall heat transfer rate

through the entire length of the plate using the relation



A.K. Pramanick, P.K. Das / International Journal of Heat and Mass Transfer 48 (2005) 1851–1857 1855
q0 ¼
Z L

0

kf
oT
oy

� �
y¼0þ

dx

¼ DTkfRe
1=2
L

Z 1

0

h0ð0Þn�1=2 dn ð20Þ

etc. Invoking Eqs. (18) and (19) into Eq. (20) a non-

dimensional equation for heat transfer is resulted as

q0

kwLDT=t
¼
Z 1

0

dn
t
t
þ nn

JhL

; ð21Þ

with

n ¼ 1=2 and hL ¼ 0:332Pr1=3 in particular: ð22Þ
It may be noted that Eq. (21) has a form exactly equiv-

alent to that of Eq. (5). Therefore, the same heuristic

logic can be extended and the optimum variation of

insulation thickness can be determined readily.

It may further be noted that even for this purely con-

jugate heat transfer situation, one can exploit the calcu-

lus of variation to obtain the optimum profile for

insulation thickness. Employing Eqs. (21) and (2b) one

may formulate a problem of unconstrained optimization

with the introduction of a Lagrange multiplier as

U ¼
Z 1

0

1

tðnÞ
t

þ nn

JhL

þ k
tðnÞ
t

0
BB@

1
CCAdn ¼

Z 1

0

F dn; ð23Þ

where the factor k is a Lagrange multiplier and F is

the shorthand for the integrand. The optimal thick-

ness is the solution of the following Euler–Lagrange

equation

oF
ot

� d

dn
oF

oðdt=dnÞ

� �
¼ 0: ð24Þ

Since, the integrand in Eq. (23) is independent of the

slope of the profile, Eq. (24) takes a simple look

oF
ot

¼ 0: ð25Þ

The resulting expression for optimal thickness distribu-

tion involving Lagrange multiplier stands as

tðnÞ
t

¼ ðkÞ�1=2 � nn

JhL
: ð26Þ

From the volume constraint, Eq. (2b) we obtain another

expression for the parameter (k)�1/2 as

ðkÞ�1=2 ¼ 1þ 1

ðnþ 1ÞJhL
: ð27Þ

Combining Eqs. (26) and (27) we conclude with the

expression

topt
t

¼ 1þ 1

JhL

1

nþ 1
� nn

� �
: ð28Þ
Employing this profile shape, non-dimensionalized mini-

mum heat transfer from Eq. (21) reads as

q0min
kwLDT=t

¼ JhL
JhL þ ðnþ 1Þ�1

: ð29Þ

One may check that the heuristic logic also provides the

same result as given in Eqs. (28) and (29).
5. Bounds of insulation volume

It is implied that optimization for minimum heat

transfer is a worthy endeavor only when amount of insu-

lating material falls into a limit. To bracket this limit

one can integrate Eq. (21) for two different extreme

conditions.

When there is acute scarcity of insulating material

passing to the lower limit J ! 0 we have

Lt
J!0

q0

kwLDT=t

� �
¼ Lt

J!0

J
Z 1

0

dn

J
t
t
þ n1=2

0:332Pr1=3

2
664

3
775

¼ 0:664Pr1=3J : ð30Þ

This is the classical Pohlhausen solution with no thick-

ness of the wall or having high conductivity of the wall

material. On the other hand, for over abundance of insu-

lating material, optimization for the profile shape is tri-

vial, that is t ! t. Passing to the higher limit J ! 1 we

obtain

Lt
J!1

q0

kwLDT=t

� �
¼ Lt

J!1
J
Z 1

0

dn

J
t
t
þ n1=2

0:332Pr1=3

2
664

3
775 ¼ 1:

ð31Þ

Now, we are positioned to fix an upper ceiling for the

insulating material employing Bejan�s method of inter-
secting asymptotes [5,6]. Elimination of q 0 terms be-

tween Eqs. (30) and (31) yields

Jmax ¼ 1:506Pr�1=3: ð32Þ

In Eq. (32) it is revealed that Jmax scales with Pr�1/3 and

bounded in the domain 0 < Jmax1:506Pr�1=3, when opti-
mization problem actually becomes a non-trivial one.

From the definition (16), it is evident that the para-

meter J represents a competition between convection

through the boundary layer and conduction through

the insulating material. The value of the parameter J
of the order of unity signifies a transition between an

over all resistance dominated by the insulating material

and to that of boundary layer. Thus, it is more realistic

to treat the limit J ! 0 as J 	 1 and J ! 1 as J � 1.

From Eqs. (22) and (28) for non-zero wall thickness it

can be read that J � 1. This final result is in qualitative
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agreement with that obtained in the document [1] after

elaborate numerical computations.

6. Insulation with tapered profile

It has been mentioned earlier that Lim et al. [1] as-

sumed a tapered profile of the insulation and numeri-

cally solved the convective heat transfer problem with

conjugate boundary condition at the top surface of the

plate. The authors selected an insulation profile qualita-

tively similar to an optimum one, as they could not ex-

tend calculus of variation for the insulation problem

with a rigorous conjugate boundary condition. With

the background provided in Section 4 such an assump-

tion is not mandatory for the optimum design of insula-

tion. However, a tapered profile of insulation is still of

interest due to the ease of fabrication.

We will show here that analysis presented in Section

4 is general enough to handle the taper profile of the

insulation and a closed form expression can be deduced

for the minimum heat transport rate. It can be noticed

that for n = 1 Eq. (28) represents a triangular profile

for the distribution of insulating material. The reciprocal

of the group JhL is termed as taper parameter. With

these Eq. (28) resumes a linearized form

ttaper
t

¼ 1þ b
1

2
� n

� �
; where 0 < b ¼ 1

JhL
6 2: ð33Þ

The expression for heat transfer rate with this profile is

readily obtained from Eq. (21) as

q0taper
kwLDT=t

¼ 2J
Z 1

0

ndn

An2 þ Bn þ C
; ð34Þ

where

A ¼ �Jb; B ¼ 0:332Pr1=3

 ��1

and

C ¼ J 1þ b
2

� �
: ð35Þ

For all possible practical set of values of the parameters

4AC � B2 ¼ �4J 2b 1þ b
2

� �
� 0:332Pr1=3

 ��2

< 0: ð36Þ

Thus, the algebraic expression for heat transfer rate as-

sumes the form

q0taper
kwLDT=t

¼ 2J ln
Aþ Bþ C

C

� �1=2A2
64


 2Aþ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2Aþ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
 

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
!B=2A

ffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p 3
75: ð37Þ

This is the exact solution of the numerical result pre-

sented in [1]. Comparing heat transfer results for the rep-
resentative material volume J ¼ 1, thermophysical

property Pr = 1 and the optimum taper parameter

b = 2, one can verify the relative figure of merit from

the ratio

q0taper
q0min

¼ 1:0095: ð38Þ

The last relation reveals that only 0.1% improvement is

experienced by the actual optimum profile in place of

approximated linearized profile. This taper profile is

one such among many other competing designs.

In case of constant wall thickness the taper parameter

reduces to zero. The heat transfer can be obtained in

algebraic form by evaluating the following reduced

integral

q0constant
kwLDT=t

¼ 2J
Z 1

0

ndn

Bn þ J
: ð39Þ

The final algebraic expression takes the form

q0constant
kwLDT=t

¼ 2J ln e1=B
J

Bþ J

� �J=B2
" #

: ð40Þ

Comparative goodness of tapered profile over uni-

form thickness can be judged by combining the expres-

sions for heat transfer contained in Eqs. (38) and (41) as

q0taper
q0constant

¼ ln AþBþC
C

� �1=2A
2AþBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p

2AþB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p
 2

64

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p
!B=2A

ffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC

p 3
75
,
ln e1=B

J

Bþ J

� �J=B2
" #

:

ð41Þ
It is easy to verify that this ratio is always less than unity

for any value of the design parameter b in the bound

[0,2].
7. Commonality of nature of optimization constraints

We will now pay a second look at heuristically ob-

tained constraint that is Eq. (7). Substituting Eq. (9) in

Eq. (7) produces an estimate for total resistance, which

is exactly the same as that of Eq. (8). Again, Eq. (9) is

the general result of variational principle of optimization

[1]. Eq. (8) was obtained directly from the material vol-

ume constraint, Eq. (2a) and heuristic relation, Eq. (7).

This proves the worth of postulating the auxiliary con-

straint, Eq. (7). The synthesis of this supplementary

equation contains the whole physics of the problem.

Here, synthetic constraint presupposes that total con-

ductive and convective resistance is ‘‘conserved’’; though

they may not take an equal share at each and every point

of the geometry under consideration.
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A pertinent example is the Bernoulli equation for a

stream tube in an inviscid flow field where, pressure, ki-

netic and potential energy of the flow compete with each

other. The isopotential line provides a basis for under-

standing the laminar to turbulent transition mechanism

as a parallelism between viscid to inviscid transforma-

tion [7]. In rigid body mechanics dropping the pressure

term we obtain the conservation equation for kinetic

and potential energy. At some point of the trajectory

the contributing components of a constraint may take

an equal share. But this is not necessary condition for

optimality (minimum, shortest, quickest, etc.). Existence

of isoline is the only rudimental feature of extremality.

In heat transfer literature [8] there is perhaps more

misunderstanding than real conflict between power

maximization (PM) and entropy generation minimiza-

tion (EGM) line of optimization. All results obtained

otherwise can be reproduced by minimizing the entropy

production rate. The concept of isoline can still be in-

voked in the following manner. Minimizing entropy gen-

eration rate _Sgen with respect to some design variable v,
the first order condition for extrema stands as

d

dv
ð _SgenÞ ¼ 0: ð42Þ

Thus, for local equilibrium model in some domain of v
we actually have a pseudo constraint

_Sgen ¼ _Sgen ðConstantÞ: ð43Þ

But Eq. (43) constitutes the locus of an isoline and can

be deployed with other physical constraints of the model

to obtain the condition for optimum. This logical foun-

dation constructs the geometrical interpretation of the

optimized results. For an ideally reversible process this

constant is identically zero.

After identification of m different competing dissipat-

ing mechanisms v1, v2 and vn for a physical process, the

synthetic constraint can be laid down asXm
i¼1

vm ¼ v; ð44Þ

where the constant v is dictated by the finite time and fi-
nite resources accessible for a system. For a single con-

tributing mechanism entropy generation between parts

of the system can be considered. It has been deduced

[9] from purely theoretical reasoning that distribution

of driving forces that minimizes the entropy is uniform

throughout the system for a single acting irreversibility

factor. In literature [9,10] such monotonous distribution

of physical or non-physical entities are recognized as

principle of equipartition.
8. Conclusions

A heuristic solution methodology for the design

problem of thermal insulating systems has been pro-
posed. The technique is an analytical replacement for

the formal method of calculus of variation. It is founded

on easily perceptible logic and employs a few simple

mathematical steps to arrive at the final result.

Closed form expressions for optimum distribution of

insulating material for minimum heat transfer from a

flat plate when the other side is in convective thermal

communication with a forced laminar stream have been

obtained. Optimum shape of the profile constitutes an

isoline where total resistance contributed by conduction

and convection remains uniform throughout the length

of the plate. Optimized results are in conformity with

the principle of equipartition. Heat transfer results are

normalized by the quantity kwLDT=t, in which thickness
of wall dominates total resistance and provides an effec-

tive insulation.

An analytical expression has also been derived for ta-

pered insulation profile. However, for a certain ranges of

the parameter [1] the optimum solution exhibits only a

marginal improvement over the taper profile. Finally,

it goes without saying that any optimization problem

plays a meaningful role only when resource is limited.

An upper ceiling for the insulating material is prescribed

beyond which optimization problem is of no challenge.
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kleiner Wärmeleitung, Z. Angew. Math. Mech. 1 (1921)

115–121.

[5] A. Bejan, Shape and Structure, from Engineering to

Nature, Cambridge University Press, UK, 2000, p. 31.

[6] J. Lewins, Bejan�s constructal theory of equal potential

distribution, Int. J. Heat Mass Transfer 46 (2002) 1541–

1543.

[7] A. Bejan, Entropy Generation through Heat and Fluid

Flow, Wiley, New York, 1982, pp. 61–62.

[8] A. Bejan, Models of power plants that generate minimum

entropy while operating at maximum power, Am. J. Phys.

64 (1996) 1054–1059.

[9] A. Bejan, D. Tondeur, Equipartition, optimal allocation,

and the constructal approach to predicting organization in

nature, Rev. Gén. Therm. 37 (1998) 165–180.

[10] A. De Vos, B. Desoete, Equipartition principle in finite-

time thermodynamics, J. Non-Equilibrium Thermodyn. 25

(2000) 1–13.


	Heuristics as an alternative to variational calculus for optimization of a class of thermal insulation systems
	Introduction
	The physical model
	Optimization with assumed variation of heat transfer coefficient
	Optimization with unknown variation of convective�heat transfer coefficient
	Bounds of insulation volume
	Insulation with tapered profile
	Commonality of nature of optimization constraints
	Conclusions
	References


